Biologically Inspired Cognitive Architectures

Brandon Minnery, PhD

703-983-1026 • bminnery@mitre.org

DARPA/IPTO

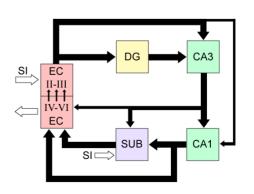
Project Data (internal use only)

- Project Number: 0706D070-NF
- Ceiling Source: DARPA
- Principal Investigator: Brandon Minnery
- DARPA Office: IPTO
- Sponsor: David Gunning
- FY06 Funding Level: \$400 K
- Technical Area: Biotechnology (Neuroscience)
- External Web URL:

http://www.darpa.mil/ipto/Programs/bica/descriptions.htm

Problem

- Current Al paradigms do not capture the functional complexity of the human brain.
- New types of cognitive computing architectures are required if the ambitions of the Al field are to be realized.



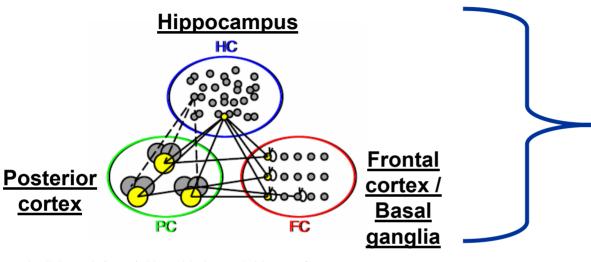
Background

- The traditional approach to machine intelligence pursued by the artificial intelligence (AI) community has fallen short of the grand vision of integrated, versatile, intelligent systems.
- Revolutionary advances may be possible by building upon new approaches inspired by cognitive psychology and neuroscience.
- Such approaches have the potential to help us understand and model significant aspects of intelligence thus far not attained by classic formal knowledge modeling technology.

Example: the hippocampus - a neurobiological circuit involved in declarative memory

Objective

- BICA will develop psychologically based and neurobiologically based theories, design principles, and architectures of human cognition.
- BICA seeks the design (Phase 1) and implementation (Phase 2) of architectures that replicate the human capacity for:
 - -- Learning
 - -- Memory
 - -- Perception
 - -- Decision Making
 - -- Symbolic Communication


Activities

- Workshop: Data Storage, Retrieval and Processing in Biological Systems (March 25–26, 2004)
- BAA; Source Selection (April 2005)
- PI site visits (September-October 2005)
- BICA Kickoff Meeting (November 2005)
- BICA Community Website (MITRE-hosted)
- MITRE continues to provide the DARPA sponsor with neuroscience-related technical expertise

Highlight: A Brain-Based Architecture Proposed by U. Colorado Boulder Team

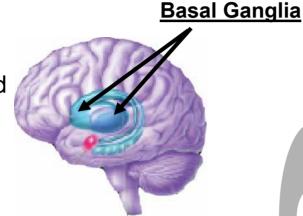
"Tripartite" Architecture emphasizing three complementary brain regions

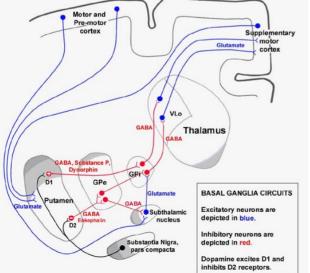
Atallah et al. (2004) Neurobio Learn & Mem, 82/3: 253-67.

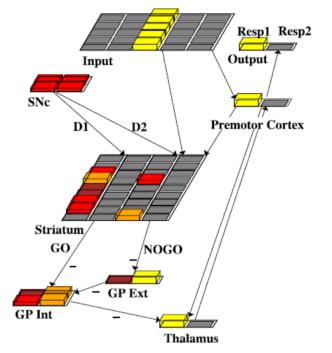
Frontal cortex Hippocampus

Basal Ganglia

Hippocampus


- Key concept:
 computational
 tradeoffs between
 major brain systems
- Biologically realistic learning mechanisms
- Integration of multiple component models into largescale architecture


DARPA


Highlight: A Brain-Based Architecture Proposed by U. Colorado Boulder Team

Example:

 Architectural components are based on known neuroanatomy and neurophysiology

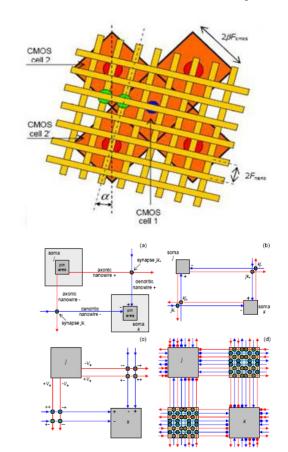
 Component models implemented as multilayered connectionist nets (biologically constrained

(Approved for Public Release, Distribution Unlimited)

Atallah et al. (2004) Neurobio Learn & Mem, 82/3: 253-67.

Impacts

Revolutionary Advances in Artificial Intelligence, including:


- Adaptive high-performance computing
- Decision support systems
- Intelligent human–computer interfaces
- Autonomous robotics
- Virtual training environments
- Modeling and simulation

Future Plans

- Conduct technical exchange meetings to promote the exchange of ideas among BICA researchers (Task 2 of Phase 1).
- Synthesize integrated cognitive architectures that merge neuromorphic and psychologically based designs (Task 3 of Phase 1).
- Evaluate architecture performance in real and simulated environments (Phase 2).
- Investigate novel, hardware-based implementations of BICA-derived architectures.

Neural circuits constructed from CMOL (CMOS + nanowires + molecules)*

